Covariance shaping least-squares estimation

نویسندگان

  • Yonina C. Eldar
  • Alan V. Oppenheim
چکیده

A new linear estimator is proposed, which we refer to as the covariance shaping least-squares (CSLS) estimator, for estimating a set of unknown deterministic parameters x observed through a known linear transformation H and corrupted by additive noise. The CSLS estimator is a biased estimator directed at improving the performance of the traditional least-squares (LS) estimator by choosing the estimate of x to minimize the (weighted) total error variance in the observations subject to a constraint on the covariance of the estimation error so that we control the dynamic range and spectral shape of the covariance of the estimation error. The CSLS estimator presented in this paper is shown to achieve the Cramér-Rao lower bound for biased estimators. Furthermore, analysis of the mean-squared error (MSE) of both the CSLS estimator and the LS estimator demonstrates that the covariance of the estimation error can be chosen such that there is a threshold SNR below which the CSLS estimator yields a lower MSE than the LS estimator for all values of x. As we show, some of the well-known modifications of the LS estimator can be formulated as CSLS estimators. This allows us to interpret these estimators as the estimators that minimize the total error variance in the observations, among all linear estimators with the same covariance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum mean-squared error covariance shaping

This paper develops and explores applications of a linear shaping transformation that minimizes the mean squared error (MSE) between the original and shaped data, i.e., that results in an output vector with the desired covariance that is as close as possible to the input, in an MSE sense. Three applications of minimum MSE shaping are considered, specifically matched filter detection, multiuser ...

متن کامل

Noise Covariance Estimation for Time-Varying and Nonlinear Systems

Kalman-based state estimators assume a priori knowledge of the covariance matrices of the process and observation noise. However, in most practical situations, noise statistics are often unknown and need to be estimated from measurement data. This paper presents a new auto-covariance least squares method for noise covariance estimation of linear time-varying and nonlinear systems. The new algor...

متن کامل

Spectral estimation by least-squares optimization based on rational covariance extension

This paper proposes a new spectral estimation technique based on rational covariance extension with degree constraint. The technique finds a rational spectral density function that approximates given spectral density data under constraint on a covariance sequence. Spectral density approximation problems are formulated as nonconvex optimization problems with respect to a Schur polynomial. To for...

متن کامل

A square root covariance algorithm for constrained recursive least squares estimation

In this contribution, a covariance counterpart is described of the information matrix approach to constrained recursive least squares estimation. Unlike information-type algorithms, covariance algorithms are amenable to parallel implementation, e.g. on processor arrays, and this is also demonstrated. As compared to previously described combined covariance-information algorithms/arrays, the pres...

متن کامل

Recursive Generalized Total Least Squares with Noise Covariance Estimation

We propose a recursive generalized total least-squares (RGTLS) estimator that is used in parallel with a noise covariance estimator (NCE) to solve the errors-in-variables problem for multi-input-single-output linear systems with unknown noise covariance matrix. Simulation experiments show that the suggested RGTLS with NCE procedure outperforms the common recursive least squares (RLS) and recurs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2003